Ingenieria Pesquera

sábado, 28 de junio de 2008

Fisica II - Magnetismo -

Extraido de "De la brujula al espín: El magnetismo"


LOS CAMPOS MAGNÉTICO Y ELÉCTRICO

Las ecuaciones de Maxwell unifican la teoría electromagnética en forma elegante y compacta. En la figura 10 se presenta su forma diferencial, que aparece en notación vectorial. No crea el lector que a continuación procederemos a utilizar tan formidable representación matemática y que los no iniciados perderán el hilo de la materia. Solamente queremos mostrar cómo lucen estas ecuaciones antes de introducir el concepto de campo. Como se ve, en ellas aparecen dos cantidades físicas, E y B, que son el campo eléctrico y el magnético respectivamente. Esto nos indica que las ecuaciones de Maxwell se ocupan de cómo los campos están relacionados entre sí y nos lleva a caer en la cuenta de que el concepto de campo es esencial para interpretar y describir cualquier fenómeno electromagnético.

Figura 10. Ecuaciones de Maxwell en el vacío.

Faraday introdujo el campo eléctrico, el cual describiremos brevemente antes de estudiar el campo magnético. Supongamos que se tiene un arreglo de cargas fijas en el espacio y que estamos interesados en el efecto que éstas tienen sobre otra carga q que se lleva a su vecindad. La distribución de carga ejerce una fuerza sobre q proporcional a la misma carga q. El campo eléctrico E asociado a esta distribución de cargas es esta misma fuerza dividida entre q. Esto se hace para obtener una cantidad que solamente depende de la distribución de cargas original. Ahora bien, para aclarar más esta definición del campo recordemos que en el siglo XIX el efecto de una carga sobre otra parecía ocurrir instantáneamente; de allí se derivó el concepto de "acción a distancia", esto es, que al tener una configuración de cargas y al mover, digamos, una de ellas, resulta que las otras parecen sentir su acción de inmediato, no importando a qué distancia se encuentre la carga. A Faraday se le ocurrió visualizar el campo en términos de líneas de campo. Éstas son curvas cuya tangente, en cualquier punto, tiene la misma dirección que la fuerza entre las cargas.

Estas curvas son continuas, excepto donde hay cargas o el campo es cero. Mientras más densas sean estas líneas de campo, más fuerte es el mismo. Nótese que el campo eléctrico (y el magnético) son cantidades que poseen magnitud y dirección, o sea que para definirlas necesitamos de estos dos datos. En lenguaje matemático, los campos son vectores. En la figura 11 se muestran algunas líneas de campo cuando interactúan una carga positiva de + 3 unidades y otra negativa de 1 unidad.

Figura 11. Algunas líneas de campo del campo eléctrico de dos cargas q1 = +3, q2 = -1.

Como se observa, el campo es muy grande cerca de las cargas y las líneas se vuelven menos densas conforme nos alejamos de ellas. Las flechas indican que si ponemos una carga positiva q de prueba de una unidad, ésta será atraída por la carga negativa si la ponemos entre las dos cargas y repelida radialmente por la carga positiva si q está en el segundo y tercer cuadrante. Si q está en el primero y cuarto cuadrante, será repelida de otra manera.

Ahora bien, ¿cómo definimos el campo magnético? Éste es más difícil de definir que el eléctrico por la siguiente razón: tal y como se nota en la segunda ecuación de la figura 10, existe una asimetría entre el campo eléctrico y el magnético debido a que no hay cargas magnéticas aisladas. Esto implica que la situación descrita anteriormente no es aplicable al caso magnético, pues las líneas de campo no pueden salir o llegar a las cargas magnéticas aisladas ya que simplemente no existen.

Si bien podemos colocar dos imanes con sus polos norte y sur y trazar líneas de campo entre ellos, una definición más consistente debe estar ligada al movimiento de una carga. Esto es esencial: el magnetismo, aun cuando empezó a estudiarse desde tiempos remotos, no fue incorporado dentro de un esquema conceptual más vasto ni se empezó a estudiar en forma dinámica hasta el descubrimiento de Oersted en 1820.

De la misma manera en que definimos el campo eléctrico como la fuerza que se ejerce sobre una carga unitaria en reposo, podemos definir otro campo, el magnético, como la parte de la fuerza que involucra la velocidad de la carga y actúa sobre una carga en movimiento. Por lo tanto, la fuerza que actúa sobre una carga tiene una parte estática que sirve para definir el campo eléctrico y una parte dinámica que lo hace para el campo magnético. Esta es la conocida fuerza de Lorentz, llamada así en honor del gran físico holandés de este nombre.

Con el campo definido de esta manera se puede predecir la parte dependiente de la velocidad para la fuerza que actúa sobre cualquier partícula cargada moviéndose a una velocidad dada. El concepto de campo es muy poderoso, pues conociendo el campo eléctrico y el magnético en un punto podemos predecir el movimiento de cualquier carga en este punto.

¿Son reales estos campos? Para científicos como Faraday y Maxwell los campos tenían una realidad física incontrovertible. Sin embargo, esta pregunta que en la actualidad recibe una gran atención no tiene una respuesta fácil. Creamos, pues, en la realidad de los campos, olvidando la "acción a distancia", y usemos esta poderosa representación para penetrar en el misterio de la luz y los materiales magnéticos. El describir los fenómenos electromagnéticos en términos de campos permite que el fundamental concepto de energía pueda ser introducido en forma natural. Los campos son portadores de energía. De hecho, es frecuente mencionar que tanto el campo eléctrico como el magnético almacenan energía. Dada una distribución de cargas o corrientes eléctricas, se tiene una energía potencial asociada a la misma. Más específicamente, dado un campo, la energía potencial asociada al mismo se representa como el cuadrado del campo en cuestión. Al describir la propagación de ondas electromagnéticas veremos que es natural asociar la energía que transportan las ondas con la energía de los campos.

LAS LEYES DE MAXWELL

Las leyes de Maxwell resumen y encuadran dentro de una teoría poderosísima los conocimientos que sobre el comportamiento de los campos, cargas y corrientes en el vacío y en la materia se habían venido acumulando durante muchos años de investigación. Su formulación matemática luce imponente (Figura 10), pero el lector interesado en el magnetismo puede, con un poco de esfuerzo, penetrar en el significado físico que contienen estas leyes.

A continuación describiremos las leyes fundamentales del electromagnetismo y su relación con los fenómenos fundamentales en la materia. Aun cuando este libro se ocupa del magnetismo, describiremos brevemente las leyes que versan sobre las cargas y corrientes eléctricas pues, como hemos visto, las cargas magnéticas libres o monopolos magnéticos no existen y son estas corrientes eléctricas las que generan campos magnéticos en el vacío. Estos campos son de la misma naturaleza que el campo magnético producido por un imán por medio de un mecanismo microscópico, por lo que el estudio de las leyes de Maxwell nos será de mucha utilidad para discusiones posteriores.

Cuatro son las leyes de Maxwell. Éstas, de hecho, fueron descubiertas por científicos anteriores a este gran físico. Sin embargo, éste supo reformularlas, completarlas y obtener de ellas un torrente de información sobre los fenómenos electromagnéticos.

Estas leyes son:

1) Ley de Gauss, que se ocupa del campo y de las cargas eléctricas y es equivalente a la famosa ley de Coulomb;

2) Ley sobre la ausencia de cargas magnéticas libres;

3) Ley de Faraday, sobre la inducción electromagnética, y

4) Ley de Ampère-Maxwell sobre la dependencia del campo magnético de la corriente eléctrica y la variación del campo eléctrico.

Hay que enfatizar que estas leyes fueron descubiertas experimentalmente; con excepción de una parte de la ley de Ampère-Maxwell (la parte de Maxwell). Se puede afirmar que fue Faraday quien, al descubrir la ley que lleva su nombre, introdujo el campo magnético en 1845. Junto con estas leyes existen las llamadas relaciones constitutivas, que relacionan los campos con la magnetización y polarización de la materia. Estas relaciones y la fuerza de Lorentz, descrita anteriormente, completa el gran edificio del electromagnetismo clásico. Pasemos a recorrerlo en detalle para adquirir un conocimiento más completo de su estructura.

LEY DE GAUSS

La ley de Gauss es equivalente a la ley de Coulomb, la cual asevera que la fuerza entre dos cargas es inversamente proporcional al cuadrado de la distancia que las separa. Dicha fuerza puede ser repulsiva o atractiva, según que las cargas sean de signo igual o contrario respectivamente. Esta ley ha sido comprobada empíricamente en innumerables ocasiones. Como vimos más atrás, el campo eléctrico está relacionado con la fuerza entre una carga de prueba y otra carga, ya que si dividimos esta fuerza entre la carga de prueba obtenemos el campo eléctrico producido por la otra carga. Es notable que la fuerza con la cual interactúan dos cargas no cambia por la presencia de una tercera.

Así pues, el campo eléctrico es producido siempre por una fuente, la cual puede ser una carga o un sistema de cargas. La relación entre el campo eléctrico y sus fuentes puede ser expresada en forma sencilla definiendo el concepto de flujo. En la figura 12 se representa una superficie cerrada de forma arbitraria. El campo representado por las líneas atraviesa esta superficie. Si la dividimos en pequeñas secciones de tal forma que cada pedazo de superficie sea plano y el campo eléctrico no cambie apreciablemente de una sección a la contigua, podemos definir el flujo como el producto del campo eléctrico por el área de la sección que atraviesa. O sea que el flujo nos da una idea de qué tanto campo atraviesa una superficie si usamos todas las secciones que componen esta superficie.

Hasta ahora hemos considerado que la superficie no encierra ninguna carga. Pero ¿qué ocurre si lo hace? Es la ley de Gauss la que nos da la respuesta: el flujo de campo eléctrico a través de cualquier superficie cerrada es proporcional a la carga total encerrada por esa superficie. Esta es una ley que tiene el mismo contenido físico que la ley de Coulomb, pero expresado en términos del campo y no de la fuerza. Asimismo permite la obtención de expresiones para el campo electrostático dado cualquier arreglo de cargas en reposo. De hecho, el campo eléctrico decrece de la misma forma que el cuadrado de la distancia al alejarse de una carga puntual.

Figura 12. Una superficie cerrada sobre un campo se divide en pequeños elementos de área. Cada elemento se representa por un vector.

Muchas veces, sin embargo, la cantidad que se utiliza para obtener información acerca del campo eléctrico es la diferencia de potencial que aparecerá también al examinar la ley de inducción. El potencial eléctrico es una cantidad escalar, pues sólo se describe con una magnitud, y sirve para medir la cantidad de trabajo por unidad de carga que se realiza al mover una carga positiva de un punto a a un punto b en el campo eléctrico (Figura 13).

Figura 13. Una carga de prueba q0 se mueve de a a b en un campo eléctrico por medio de la acción de una fuerza externa.

La diferencia de potencial entre los dos puntos es independiente de la trayectoria que se tome para ir de a a b y su variación nos proporciona el campo eléctrico. Para hacer contacto con las manifestaciones cotidianas de la electricidad, diremos que la diferencia de potencial no es otra cosa que el voltaje, al cual nos referimos continuamente. El que haya poco voltaje significa que hay poca diferencia de potencial y que por lo tanto las cargas eléctricas, en este caso electrones, fluyen en forma más errática y que en consecuencia tenemos menos corriente.

LEY DE LA AUSENCIA DE MONOPOLOS MAGNÉTICOS

Nos hemos extendido en la discusión de la ley de Gauss porque los conceptos de flujo y carga son importantes en el estudio de la ley que ahora nos ocupa. En la figura 7 se muestran las líneas de campo magnético y tal pareciera que hay un exceso de carga magnética positiva en un extremo del imán y exceso de carga magnética negativa en el otro. Así, podría pensarse que existe una ley análoga a la de Gauss para el caso magnético. Si tomáramos una superficie que incluya una región del espacio donde haya cargas o polos magnéticos aislados, tendríamos un flujo neto y por lo tanto una ley de Gauss magnética, con lo que se obtendría un campo magnético que decae de la misma forma que el inverso del cuadrado de la distancia a distancias grandes. Es un hecho, sin embargo, que la materia está compuesta de cargas eléctricas libres y no de cargas magnéticas. Dicho de otra forma, los polos magnéticos aislados parecen no existir y por lo tanto la ley para el flujo de campo magnético es diferente de la de Gauss y reza como sigue: el flujo neto de campo magnético a través de cualquier superficie cerrada es cero. Esto es cierto para todo el espacio, pues no existen polos magnéticos aislados.

Sin embargo, en principio no existe impedimento físico para pensar que en algún lugar del espacio (o en el pasado) existieron monopolos magnéticos. A lo largo de este siglo ha habido numerosos intentos para localizar un monopolo magnético. Algunas modernas teorías cosmológicas predicen que pares de polos magnéticos fueron creados al principio del Universo para separarse posteriormente. Estos monopolos serían "pocos" comparados con el número de electrones, por ejemplo, y difíciles de detectar. Esta fascinante búsqueda tal vez tendrá éxito en el futuro.

¿Qué incidencia tendría esto en la ley que ahora tratamos? Aparte de aseverar que el flujo magnético neto en algunos puntos del Universo no es cero, las conclusiones generales de la electrodinámica no se verían afectadas pues, como ya dijimos, la materia está compuesta de cargas eléctricas y las fuentes del campo magnético son las corrientes eléctricas, además de que las interacciones cuánticas son microscópicas.

Para completar diremos que esta ley implica la existencia de una cantidad llamada potencial vectorial magnético, que es de suma importancia en la electrodinámica.

LEY DE INDUCCIÓN DE FARADAY

Entre los físicos que empezaron a investigar la relación entre electricidad y magnetismo, Faraday fue el que realizó las contribuciones más importantes, junto con Ampère. Aquél, entre otras cosas, encontró que una aguja se magnetiza por el pulso de corriente inducida y que puede ser magnetizada en sentido opuesto cuando el circuito primario es desconectado. Esto es consecuencia de la fuerza que un campo magnético ejerce sobre una carga en movimiento. Si imaginamos un circuito moviéndose en un campo magnético producido por una corriente uniforme y suponemos que una carga se mueve en el circuito, podemos definir a la fuerza electromotriz como la cantidad proporcional al trabajo que se hace para mover la carga en cuestión a lo largo del circuito. Si la resistencia del circuito es R, la fuerza electromotriz E hará circular una corriente 1 en el circuito de acuerdo con la ley de Ohm I=E/R. Esto indica que la fuerza electromotriz esta íntimamente relacionada con la diferencia de potencial definida en párrafos anteriores. Así, la fuerza electromotriz es proporcional a la variación temporal del flujo de campo magnético que ocurre al desplazarse el circuito (Figura 14).

Puede ocurrir que el circuito se agrande, cambie de forma, etc., dando lugar a que cambie el flujo y por lo tanto se origine una fuerza electromotriz. ¿Qué dirección sigue la corriente en el circuito? Lenz aplicó el principio, basado en la ley de conservación de la energía, de que un sistema físico tiende a oponerse a cambiar del estado en que se encuentra. De esta manera, si sucede que el flujo que pasa por un circuito aumenta con el tiempo, aparecerá un nuevo flujo en dirección opuesta producido por una corriente en el circuito. Como la dirección de la corriente y del campo magnético están relacionadas, se puede obtener la dirección de la corriente conociendo la dirección del flujo.

Figura 14. A medida que el anillo cae, el flujo a través del anillo crece. Según la ley de Lenz, la fuerza electromotriz inducida seguirá la dirección de las flechas.

En resumen, al mover un circuito en un campo magnético, la fuerza electromotriz inducida genera una nueva corriente eléctrica en el circuito, que es proporcional al flujo del campo magnético. Faraday demostró que lo mismo ocurre cuando se varía la corriente y el circuito se mantiene en reposo, en lugar de mantener constante la corriente que genera el campo magnético en donde se mueve el circuito. Estas dos situaciones son equivalentes y a partir de ellas podemos enunciar la ley de inducción, en forma general, como sigue: la fuerza electromotriz inducida en un circuito es proporcional a la variación temporal del flujo del campo magnético que rodea al circuito.

Como la fuerza electromotriz se relaciona con el campo eléctrico, la ley establece una relación entre el campo eléctrico en una trayectoria cerrada y la razón de cambio temporal del campo magnético (Figura 14). Esta ley es una relación fundamental que nos muestra cómo se induce un campo eléctrico al variar el campo magnético. Como no existen monopolos magnéticos, no habrá corrientes magnéticas que induzcan un campo eléctrico.

LEY DE AMPÈRE-MAXWELL

El hecho experimental con el que se relaciona esta ley es la producción de campos magnéticos cuando circula una corriente. Como vimos en el capítulo 1, este descubrimiento, debido a Oersted, conmocionó al mundo científico. Ampère descubrió más tarde que si una corriente eléctrica estacionaria circula por un alambre y trazamos una trayectoria cerrada alrededor del alambre, entonces el producto del campo magnético originado por la corriente, por la longitud de esta trayectoria, es proporcional a la corriente. El resultado llevó a Ampère a proponer que el magnetismo en la materia es causado por corrientes de electrones en sus órbitas.

Por cierto tiempo se creyó que sólo la corriente eléctrica generaba un campo magnético. Sin embargo, faltaba un elemento que el genio de Maxwell aportó. Su razonamiento fue el siguiente. Como la carga eléctrica está compuesta de cargas en movimiento y la carga no se crea ni se destruye, la llamada ecuación de continuidad establece que si la carga varía con el tiempo en un punto del espacio, existe una fuente o sumidero de corriente en ese punto. Recordemos que la ley de Ampère es válida para corrientes estacionarias que no varían con el tiempo. Supongamos ahora que tenemos una distribución de cargas que varían con el tiempo. Se debe entonces agregar un término a la ley de Ampère. Este término proviene del hecho de que al variar un campo eléctrico se origina un campo magnético. En ausencia de corriente eléctrica éste deberla ser el único efecto que generara un campo magnético. Notemos que el caso es análogo a lo que sucede en la ley de Faraday y que al agregar este término Maxwell hizo simétricas las ecuaciones (Figura 10). ¿Por qué Faraday no notó este efecto en sus experimentos? Esto se debe a que en cualquier aparato en el cual varía el campo eléctrico, éste lo hace en forma muy lenta. Para hallar el efecto se necesita que el campo cambie rápidamente, tan rápidamente como el tiempo que la luz tarde en cruzar el aparato, o sea tiempos pequeñísimos. Usando microondas, Hertz comprobó la existencia de este efecto predicho por Maxwell.

Por lo tanto, se puede enunciar la ley como sigue: la razón de variación temporal del campo eléctrico más la corriente estacionaria producida por cargas en movimiento es proporcional al campo magnético a lo largo de una trayectoria cerrada.

Así, hemos presentado las cuatro leyes fundamentales del electromagnetismo. A continuación examinaremos cómo fueron usadas por Maxwell para predecir que la luz es una onda electromagnética que se desplaza en el vacío.

LA LUZ ES RADIACIÓN ELECTROMAGNÉTICA

¿Cómo es que Maxwell predijo a partir de sus ecuaciones que la luz es una onda electromagnética, es decir que consiste en campos eléctricos y magnéticos propagándose en ángulos rectos uno con respecto al otro? Antes de responder a la pregunta anterior, aclaremos que por luz entendemos en esta sección todo el espectro de radiaciones electromagnéticas. Una onda se propaga con cierta velocidad y frecuencia y las características de la misma varían con ésta. Las ondas de muy baja frecuencia o longitud de onda larga son ondas de radio. Al aumentar la frecuencia tendremos las conocidas microondas, después la radiación infrarroja, hasta llegar a un pequeño intervalo de 1014 ciclos/seg donde encontraremos la luz visible, del rojo al azul. Sigue después la radiación ultravioleta y a altas frecuencias los rayos X. Pues bien, en este espectro de radiación tenemos ondas electromagnéticas que se transmiten a una velocidad constante y con frecuencia distinta. A mayor frecuencia, mayor es la energía transportada.

Figura 15. Un campo magnético que cambia uniformemente (DB) produce un campo elécrtico estacionario en un aro de alambre. Si el campo magnético cambia en forma no uniforme, produce un campo eléctrico cambiante en el aro de alambre.

La predicción de Maxwell se basa en dos pilares: el descubrimiento de que existe un campo magnético asociado a cargas en movimiento estacionario, además de que (y ésta fue su gran aportación) una variación del campo eléctrico induce también un campo magnético, y el descubrimiento de Faraday de que un campo magnético variante induce una corriente. Si el lector escudriña la figura 10, haciendo cero la carga p y la corriente J debida a las cargas en movimiento, verá que las dos últimas ecuaciones son simétricas y que ante una sustitución de E por -B serán completamente invariantes.

Maxwell interpretó y conectó estas dos leyes imaginando un circuito en el espacio, tal como se muestra en la figura 15.

Supongamos que existe un campo magnético no uniforme que varía con el tiempo. La ley de Faraday nos indica que este campo inducirá una fuerza electromotriz que a su vez producirá una corriente que representa un campo eléctrico no uniforme variando en el tiempo. Este campo a su vez produce un campo magnético no uniforme que se desplazará en el espacio. Para evitar complicaciones con la forma y tamaño del circuito, hagámoslo infinitamente pequeño. De esta forma y en lenguaje campista ocurre que en algún punto del espacio un campo magnético variante inducirá un campo eléctrico variante (aun sin circuito), el cual a su vez inducirá un campo eléctrico en otro punto del tiempo y del espacio y así sucesivamente. De esta manera se genera una onda electromagnética donde los campos aquí y ahora dependen de cómo eran los campos en el pasado y de la posición inmediatamente anterior.

Maxwell, a continuación, propuso la hipótesis de que estas ondas eran ondas transversales. Al generarse uno al otro, el campo magnético y el eléctrico lo hacen a ángulos rectos, y de tal forma que la onda de luz se propaga también en ángulos rectos respecto a los dos campos (Figura 16).

Además, probó que la velocidad de transmisión de las ondas electromagnéticas era 3 X l05 km/seg en el vacío.

Lo que hemos descrito brevemente, sin duda representa uno de los logros culminantes de la física en todos los tiempos. Cuando los resultados fueron publicados en 1873, pocos científicos captaron todas las consecuencias que se derivaban de esta teoría.

Figura 16. Configuración de campos eléctrico y magnético que viajan con velocidad c en la dirección y.

La teoría tuvo que aguardar alrededor de 15 años para su confirmación experimental por Hertz, quien, para diseñar su experimento, utilizó el hecho, enfatizado por Maxwell, de que para producir una onda electromagnética se tiene que excitar una carga para ponerla en movimiento y así generar la radiación. Hertz dispuso de un generador que producía ondas con frecuencia de 108 ciclos/seg, o sea microondas, y no produjo luz visible.

Queremos por último enfatizar que las ondas electromagnéticas pueden superponerse, ya que por fortuna las ecuaciones de la electrodinámica son lineales en los campos. Si dos conjuntos de campos satisfacen las ecuaciones, su suma también lo hace, y así cualquier superposición de ondas electromagnéticas planas tiene las características generales de las ondas originales; a saber:

1) viajan a la velocidad de la luz, sin cambiar forma, cualquiera que ésta sea;

2) el campo magnético y eléctrico son perpendiculares uno al otro y a la dirección de propagación de la onda, y

3) en cualquier tiempo y lugar la magnitud del campo eléctrico es igual a la del magnético.

CAMPO MAGNÉTICO Y MATERIA

Hasta ahora hemos descrito a los campos en el vacío y no hemos hecho mención de su comportamiento cuando interactúan con la materia. Comentábamos más atrás que el estudio del concepto de campo había incidido enormemente en el estudio de los materiales magnéticos, ya que podía englobar dentro de un esquema conceptual único una gran cantidad de fenómenos. En esta sección nos limitaremos a estudiar campos magnéticos interactuando con la materia, mencionando sólo de pasada algunos elementos sobre los campos eléctricos. Es de hacer notar que no describiremos cómo la electrodinámica se une a la termodinámica para entender los cambios de energía que ocurren al efectuar un proceso físico en materiales magnéticos, puesto que eso sería el tema de un libro aparte. Para iniciar nuestra discusión, supongamos que tenemos una bobina que produce campos magnéticos muy fuertes. ¿Qué ocurre si sometemos diversas sustancias al efecto de este campo? Sabemos que las partículas de estos materiales sufren una fuerza proporcional a la masa de la muestra. Sin embargo, otros resultados no muestran un comportamiento sistemático: unas sustancias son jaladas hacia la dirección en donde el campo es mayor, otras hacia donde disminuye, otras más apenas parecen sentir el intenso campo magnético al cual están sometidas, etc. Por ejemplo, el oxígeno líquido puede sentir una gran fuerza, mientras que el nitrógeno apenas si se entera de que hay un campo. Esto nos indica la gran variedad de materiales magnéticos que existen y el intervalo tan grande en que la fuerza magnética ejerce su acción. Obviamente el hierro parece ser "más magnético" que otras sustancias (v.g., cinco órdenes de magnitud respecto al cobre). Además, para algunas sustancias la fuerza que actúa sobre ellas varía de la misma forma que el cuadrado del campo, mientras que para los óxidos de hierro o el hierro mismo varía lentamente. Es conveniente clasificar a las sustancias de acuerdo a su comportamiento para poder aplicar las leyes estudiadas en las secciones anteriores, debidamente modificadas, para tomar en cuenta que hay materia. Así, las sustancias que son repelidas por los imanes son llamadas diamagnéticas, por ejemplo el agua y los compuestos orgánicos. De hecho, todas las sustancias son diamagnéticas, pero en algunas de ellas otros efectos son más importantes.

Las sustancias atraídas hacia campos más fuertes son llamadas paramagnéticas. En algunos metales el paramagnetismo es débil y en otros fuerte. Además, a bajas temperaturas el paramagnetismo aumenta, tal como sucede con el oxígeno líquido.

Finalmente, las sustancias que se comportan como el hierro y la magnetita son llamadas ferromagnéticas.

¿Cómo podemos descubrir este comportamiento de la materia sin recurrir a un modelo microscópico? ¿Pueden adaptarse las leyes macroscópicas para entender estos tipos de magnetismo? Para empezar, hay que tener presente que en su interacción con la materia el campo magnético juega un papel radicalmente distinto al campo eléctrico, pues la materia está hecha de cargas eléctricas y corrientes eléctricas y no existen cargas o corrientes magnéticas. De allí que esperemos que las fuerzas eléctricas dominen el comportamiento de la materia.

Dejaremos para el siguiente capítulo la descripción de modelos microscópicos para explicar el magnetismo. Sólo recordaremos que las explicaciones dadas por Ampère y otros físicos del siglo XIX y principios del siglo XX consideraban que el magnetismo era causado por las corrientes atómicas que al crear campos macroscópicos determinaban las características magnéticas de la materia.

Para caracterizar macroscópicamente las diversas sustancias es conveniente introducir el concepto de momento magnético. Este se define como la cantidad proporcional al producto de la corriente que se mueve en un circuito por el área encerrada por el mismo. Si aplicamos un campo magnético externo veremos que la fuerza sobre este dipolo es proporcional al campo magnético, y el resultado experimental es que las sustancias paramagnéticas y diamagnéticas adquieren un momento magnético proporcional al campo. Esta relación es lineal y podemos definir a la susceptibilidad magnética X como la razón entre el momento magnético y el campo. Para sustancias diamagnéticas la susceptibilidad es pequeña y menor que cero, del orden de -1 x 106. Para materiales paramagnéticos X es positiva y un poco mayor. Por lo tanto, podemos afirmar que en estas sustancias el campo aplicado que actúa sobre los dipolos magnéticos es el mismo que en el vacío. Sin embargo, en otro sistema el campo producido por los momentos magnéticos es grande, por lo que deberíamos tomar en cuenta estos campos y adicionarlos al campo aplicado. Aquí es conveniente hacer notar que las corrientes pueden clasificarse como corrientes libres y ligadas. Las primeras corresponden a corrientes macróscópicas, mientras que las segundas están asociadas a corrientes moleculares, es decir a la fuente de la magnetización del material. Las corrientes libres están asociadas a un nuevo campo magnético H, distinto de nuestro conocido campo magnético B, mientras que este último está asociado a la corriente total. De paso mencionaremos que nuestro conocido campo eléctrico E está asociado a la carga total. La diferencia entre H, llamado desplazamiento magnético, y el campo B, es obviamente proporcional a la magnetización del material, y su razón es la llamada permeabilidad magnética. De hecho, para estudiar los campos originados por corrientes libres debería usarse el desplazamiento magnético. Sin embargo, consideramos que el campo magnético fundamental es B, ya que no existen cargas magnéticas libres.

Habiendo examinado someramente la susceptibilidad magnética para sustancias diamagnéticas y paramagnéticas, pasemos a estudiarla cuando el material es ferromagnético. El lector se habrá dado cuenta que el ferromagnetismo es el fenómeno que atrajo la atención del hombre hacia la magnetita, puesto que es magnetismo "permanente". La fuerza sobre una sustancia paramagnética es proporcional a la variación del campo, lo que sugiere que, si el campo es muy fuerte, el momento magnético de un ferromagneto alcanza un límite. Aun sin campo externo los ferromagnetos conservan su magnetización, pero la pierden al elevarse la temperatura.

Figura 17. Se muestran los dominios magnéticos en un material ferromagnético orientados al azar. Sin embargo, en cada uno de ellos todos los dipolos magnéticos se alínean en una dirección dada por las flechas.

Figura 18. Curva de magnetización (ab) y su curva asociada de histéresis (ebcde) para una muestra de hierro.

Su magnetización es mucho mayor que la de los materiales paramagnéticos. Todo esto sugiere que los dipolos magnéticos deben estar "amarrados" en una dirección por "algo" de naturaleza distinta a los mecanismos discutidos hasta ahora.

Por ejemplo, el hecho de que a determinada temperatura se destruya el ferromagnetismo indica que los momentos magnéticos no están alineados. Por supuesto que los materiales están compuestos de los llamados dominios magnéticos que serán estudiados en el siguiente capítulo, en donde millones de momentos están alineados en una dirección (Figura 17). Si hay más dominios con un momento magnético promedio en una dirección determinada, el material estará magnetizado.

¿Cuál es la relación entre la magnetización y el campo en un ferromagneto? Supongamos que tomamos hierro demagnetizado y aplicamos un campo externo, el cual hace variar B que, recordemos, está relacionado con la corriente total.

En la figura 18 podemos ver que al incrementar el campo externo los dominios se alinean fácilmente, pero que después se necesita un campo mayor para conseguir una pequeña variación de las corrientes ligadas. Si ahora disminuimos el campo externo, veremos que la curva no retorna al punto de partida por el camino que seguía al aumentar el campo.

Éste es el fenómeno de histéresis que se debe a la irreversibilidad del proceso y que es indispensable para obtener una magnetización permanente. Con esto concluimos este capítulo, para pasar en el siguiente a examinar los fundamentos microscópicos del magnetismo.

Etiquetas:

0 comentarios:

Publicar un comentario

Suscribirse a Enviar comentarios [Atom]



<< Inicio